151 research outputs found

    A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems

    Get PDF
    Copyright @ 2011 Taylor & Francis.Many real-world optimisation problems are both dynamic and multi-modal, which require an optimisation algorithm not only to find as many optima under a specific environment as possible, but also to track their moving trajectory over dynamic environments. To address this requirement, this article investigates a memetic computing approach based on particle swarm optimisation for dynamic multi-modal optimisation problems (DMMOPs). Within the framework of the proposed algorithm, a new speciation method is employed to locate and track multiple peaks and an adaptive local search method is also hybridised to accelerate the exploitation of species generated by the speciation method. In addition, a memory-based re-initialisation scheme is introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the proposed algorithm in comparison with several state-of-the-art algorithms taken from the literature. The experimental results show the efficiency of the proposed algorithm for DMMOPs.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant no. 70931001, the Funds for Creative Research Groups of China under Grant no. 71021061, the National Natural Science Foundation (NNSF) of China under Grant 71001018, Grant no. 61004121 and Grant no. 70801012 and the Fundamental Research Funds for the Central Universities Grant no. N090404020, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant no. EP/E060722/01 and Grant EP/E060722/02, and the Hong Kong Polytechnic University under Grant G-YH60

    Genetic algorithms with self-organizing behaviour in dynamic environments

    Get PDF
    Copyright @ 2007 Springer-VerlagIn recent years, researchers from the genetic algorithm (GA) community have developed several approaches to enhance the performance of traditional GAs for dynamic optimization problems (DOPs). Among these approaches, one technique is to maintain the diversity of the population by inserting random immigrants into the population. This chapter investigates a self-organizing random immigrants scheme for GAs to address DOPs, where the worst individual and its next neighbours are replaced by random immigrants. In order to protect the newly introduced immigrants from being replaced by fitter individuals, they are placed in a subpopulation. In this way, individuals start to interact between themselves and, when the fitness of the individuals are close, one single replacement of an individual can affect a large number of individuals of the population in a chain reaction. The individuals in a subpopulation are not allowed to be replaced by individuals of the main population during the current chain reaction. The number of individuals in the subpopulation is given by the number of individuals created in the current chain reaction. It is important to observe that this simple approach can take the system to a self-organization behaviour, which can be useful for GAs in dynamic environments.Financial support was obtained from FAPESP (Proc. 04/04289-6)

    The use of contextualised standardised client simulation to develop clinical reasoning in final year veterinary students

    Get PDF
    Clinical reasoning is an important skill for veterinary students to develop before graduation. Simulation has been studied in medical education as a method for developing clinical reasoning in students, but evidence supporting it is limited. This study involved the creation of a contextualized, standardized client simulation session that aimed to improve the clinical reasoning ability and confidence of final-year veterinary students. Sixty-eight participants completed three simulated primary-care consultations, with the client played by an actor and the pet by a healthy animal. Survey data showed that all participants felt that the session improved their clinical decision-making ability. Quantitative clinical reasoning self-assessment, performed using a validated rubric, triangulated this finding, showing an improvement in students’ perception of several components of their clinical reasoning skill level from before the simulation to after it. Blinded researcher analysis of the consultation video recordings found that students showed a significant increase in ability on the history-taking and making-sense-of-data (including formation of a differential diagnosis) components of the assessment rubric. Thirty students took part in focus groups investigating their experience with the simulation. Two themes arose from thematic analysis of these data: variety of reasoning methods and “It’s a different way of thinking.” The latter highlights differences between the decision making students practice during their time in education and the decision making they will use once they are in practice. Our findings suggest that simulation can be used to develop clinical reasoning in veterinary students, and they demonstrate the need for further research in this area

    Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    Get PDF
    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces

    Effects of metal-on-metal wear on the host immune system and infection in hip arthroplasty

    Get PDF
    Methods We reviewed the available literature on the influence of degradation products of MOM bearings in total hip arthroplasties on infection risk. Results Wear products were found to influence the risk of infection by hampering the immune system, by inhibiting or accelerating bacterial growth, and by a possible antibiotic resistance and heavy metal co-selection mechanism. Interpretation Whether or not the combined effects of MOM wear products make MOM bearings less or more prone to infection requires investigation in the near future

    Conceptualising spirituality for medical research and health service provision

    Get PDF
    The need to take account of spirituality in research and health services provision is assuming ever greater importance. However the field has long been hampered by a lack of conceptual clarity about the nature of spirituality itself. We do not agree with the sceptical claim that it is impossible to conceptualise spirituality within a scientific paradigm. Our aims are to 1) provide a brief over-view of critical thinking that might form the basis for a useful definition of spirituality for research and clinical work and 2) demystify the language of spirituality for clinical practice and research

    Release of tryptophan and serotonin into the portal vein of the isolated perfused rat small intestine

    Full text link
    To investigate the release of serotonin from intestinal enterochromaffin cells, we used an in vitro technique which allows studies excluding overlapping influences from outside the gut. The entire small intestine of rats fed a standard or tryptophan-enriched (3% of total) diet was totally isolated by ligatures with the exception of the superior mesentric artery and portal vein that supply and drain the intestine. Simultaneously to the vascular perfusion (Krebs-Ringer bicarbonate buffer, 0,4% human albumin, 5 m M glucose, 0.6 m M glutamine) the gut lumen was infused (buffer or 0.1 N HCL). Acidification of the gut lumen resulted in an increment of venously released tryptophan and serotonin. After feeding tryptophan-enriched food the release of tryptophan was increased. However, the total amount of released serotonin after tryptophan diet did not differ as compared to that after standard diet. Addition of a monoamino-oxidase inhibitor (pargyline) to the arterial perfusate enhanced the released amount of serotonin 3-fold in the portal venous effluent (at a concentration of 1 m M but not 0.1 m M ). Recovery studies done by arterial infusions of serotonin (1 µ M , 10µ M ) and evaluation of the amounts venously released revealed a high loss of infused serotonin (40%–70%). Our data suggest gut-born serotonin to more likely play a paracrine role than a role as a classical hormone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47538/1/433_2005_Article_BF01852260.pd

    Synthetic biology to access and expand nature's chemical diversity

    Get PDF
    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology — including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits — and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore